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ABSTRACT
Computational cognitive models are powerful tools for enhancing the quantitative and theoretical rigor of cognitive neurosci-
ence. It is thus imperative that model users—researchers who develop models, use existing models, or integrate model-based 
findings into their own research—understand how these tools work and what factors need to be considered when engaging with 
them. To this end, we developed a philosophical toolkit that addresses core questions about computational cognitive models in 
the brain and behavioral sciences. Drawing on recent advances in the philosophy of modeling, we highlight the central role of 
model users' reasoning goals in the application and interpretation of formal models. We demonstrate the utility of this perspec-
tive by first offering a philosophical introduction to the highly popular drift diffusion model (DDM) and then providing a novel 
conceptual analysis of a long-standing debate about decision thresholds in the DDM. Contrary to most existing work, we suggest 
that the two model structures implicated in the debate offer complementary—rather than competing—explanations of speeded 
choice behavior. Further, we show how the type of explanation provided by each form of the model (parsimonious and normative) 
reflects the reasoning goals of the communities of users who developed them (cognitive psychometricians and theoretical deci-
sion scientists, respectively). We conclude our analysis by offering readers a principled heuristic for deciding which of the models 
to use, thus concretely demonstrating the conceptual and practical utility of philosophy for resolving meta-scientific challenges 
in the brain and behavioral sciences.
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There is no such thing as philosophy-free science; 
there is only science whose philosophical baggage is 
taken on board without examination.

Daniel Dennett, Darwin's Dangerous Idea, 1995

1   |   Introduction

Formal theorizing via computational modeling is often lauded 
as a solution to meta-scientific challenges in the brain and be-
havioral sciences (Forstmann et  al.  2011; Grahek et  al.  2021; 
Guest and Martin 2021; Muthukrishna and Henrich 2019; Press 
et  al.  2022; Robinaugh et  al.  2021; Turner et  al.  2019). While 
formal computational models indeed have much to offer to-
ward this end, we also recognize them as incredibly powerful 
and flexible tools that—when misused—can create even worse 
problems than they were initially applied to solve. Further, sub-
fields of psychology that rest upon decades of formal modeling 
work face their own meta-scientific challenges that—by their 
nature—cannot be resolved by use of a model alone. In this arti-
cle, we aim to demonstrate the utility of philosophical research 
for mitigating and/or resolving such meta-scientific challenges. 
To do this, we have compiled insights from foundational and re-
cent work in philosophy of modeling to develop a “philosophical 
toolkit” for computational cognitive modeling. We take as an 
applied example sequential sampling models of choice-reaction 
time, with a focus on the drift diffusion or diffusion decision 
model (DDM).

A number of factors motivated our goal to focus on sequential 
sampling models. First, this family of models, and the DDM 
in particular, is highly prominent in computational cognitive 
(neuro)science. This fact, together with the aforementioned 
goal of integrating formal models into psychological research, 
has created demand for a number of different software pack-
ages that increase the accessibility of these formal modeling 
tools (e.g., the “EZ-DDM” by Wagenmakers et al. 2007 and the 
“PyDDM” by Shinn et al. 2020). A philosophical and conceptual 
analysis of how these models work and what factors need to be 
considered when using them both supports newer researchers' 
entry to this research area and helps mitigate confused applica-
tions or erroneous conclusions that might arise in the course of 
learning how to use these tools.1 We further hope that our tool-
kit offers experienced researchers an opportunity to reflect on 
their own modeling practice and the goals that shape it. Finally, 
we aim to contribute to the philosophical literature a rich case 
study about a family of models that have been almost entirely 
overlooked by the discipline. Whereas the merits and limita-
tions of, for example, connectionist and Bayesian models have 
received substantive philosophical attention, the DDM has only 
featured marginally in recent work, primarily as an example 
of cognitive models more broadly (Figdor 2018; Drayson 2020; 
Gamboa 2024). Thus, we hope this introduction to the DDM and 
its broader model family can serve as a starting point for future 
philosophical research about the role(s) of these models in com-
putational cognitive (neuro)science.

We first provide readers with a collection of philosophical tools 
for thinking about the practice and products of computational 

cognitive neuroscience research. We then demonstrate the util-
ity of such a “toolkit” in two ways: philosophically introducing 
the DDM and then presenting a novel conceptual analysis of a 
long-standing debate about the form of decision boundaries in 
the DDM (the collapsing bounds debate; Figure 1). This analy-
sis is also one of the first contributions to the debate that does 
not aim to argue in favor of one form versus the other. Rather, 
by explicating the reasoning goals motivating each “side” in the 
debate, we argue (1) that the forms offer complementary rather 
than competing explanations and (2) that the difference in those 
explanations reflects the different aims of two groups of users 
(cognitive psychometricians and theoretical decision/neurosci-
entists). We conclude our analysis with a principled heuristic for 
choosing between forms of the model implicated in the debate.

2   |   Philosophical Tools for Thinking About 
Computational Cognitive Models

The term “model” is used to refer to a number of related but func-
tionally distinct objects involved in scientific research. One thing 
common to most models is that they are representations of a tar-
get—some phenomenon in the natural world—that make it eas-
ier for a human (or group of humans) to reason about that target 
(e.g., van Rooij 2022). This article focuses on models that are for-
mal/mathematical representations of the latent entities and pro-
cesses generating an organism's behavior, often called cognitive 
or process models. Scientists use these models both to predict 
how the organism (or agent) will behave in response to experi-
mental manipulations and to explain why a particular manipu-
lation induced the behavioral response that it did. In some cases, 
these models are also tasked with predicting and explaining 
changes in neural activity related to changes in behavior. Finally, 
scientists sometimes use these models simply as measurement 
tools for quantifying individual differences in latent properties 
or processes that are relevant for a broader type of explanation. 
Thus, the same model can be used for different scientific goals 
(prediction, explanation, measurement) and be directed toward 
targets at different conceptual/spatiotemporal scales (cognitive 
processes and/or neural activity). This multiplicity of function is 
both what makes models so useful and is a primary factor con-
tributing to confusion and debates about how best to use models 
in scientific research. Reviewing some philosophical research 
concerned with the questions of what models are and how they 
work can help mitigate these confusions while also offering a 
salve against the “existemic”2 concerns that model-based cogni-
tive (neuro)science research can so frequently incur.

Based on the uses described above, the types of models we con-
sider in this article are simultaneously (i) abstract representa-
tions of latent entities and processes that generate an organism's 
behavior, (ii) theories that predict and explain changes in the 
organism's behavior, and (iii) tools for measuring the latent enti-
ties and processes represented in the model. Based on the topics 
discussed in our case study, we focus our attention on properties 
(i) and (ii), with a particular focus on how these properties relate 
to model-based explanations. Following Weisberg  (2013), we 
consider these models computational if their theoretical content 
appeals to transition rules or an algorithm (i.e., a series of steps 
specifying how an initial state is transformed into an output).3 
Importantly, these properties do not apply to all of the models 
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used in the behavioral and brain sciences, and certainly not to 
all of the objects reasonably considered scientific models.4 But 
they do aptly characterize the use of sequential sampling mod-
els in contemporary computational cognitive neuroscience (see 
also Forstmann et al. 2016 and Turner et al. 2019 for additional 
examples). The rest of this section introduces the philosophical 
research that has clarified our own thinking about these mod-
els. Readers primarily interested in learning about the DDM can 
skip ahead to Section 3.

2.1   |   Tools for Thinking About Models as 
Representations

Our toolkit begins with a survey of some philosophical literature 
concerned with the representational nature of formal models, with 
a focus on concepts most relevant to our case study in Section 4. A 
large body of research spanning philosophy of science, philosophy 
of mind, and philosophy of language is devoted to explicating the 
concept of representation; Frigg and Nguyen (2017) offer a help-
ful overview for readers interested in the role of representations in 
science. For our purposes, it suffices to say that a model becomes 
a representation of a target when a model user—a human who 
builds or interprets the model—decides that they are going to map 
components and processes of the target onto components and pro-
cesses of the model, ultimately with the goal of using properties of 
the model to reason about corresponding properties of the target 
(Winsberg and Harvard 2024). On this view, a model represents 
a target by “standing in” for the target in a way that permits the 
model user to reason about their target on the basis of interact-
ing with the model. This process has been called surrogative rea-
soning in the philosophical literature. When coining this term, 
Swoyer (1991) offers a helpful example: “By using numbers to rep-
resent the lengths of physical objects, we can represent facts about 
the objects numerically, perform calculations of various sorts, then 
translate the results back into a conclusion about the original ob-
jects. In such cases, we use one sort of thing as a surrogate in our 
thinking about another” (p. 87).

Computational cognitive models use mathematical objects 
(numbers, distributions, vectors, etc.) and equations to represent 
the cognitive entities and operations that generate an organism's 
behavior. Scientists thus use these mathematical representa-
tions as surrogates for thinking about what processes “under the 
hood” are driving behavior. Recent work in philosophy helpfully 
distinguishes between a model's structure and its construal: 
the first being the mathematical objects and equations compris-
ing the representation and the second being how those abstract 
objects are meant to be mapped onto objects and processes in 
the physical world, respectively (Weisberg 2013; Andrews 2021). 
The simple example above demonstrates how construals are 
necessary for interpreting the structure of a model. If a user was 
presented only with the set of numbers that correspond to the 
length of physical objects, but was not told what properties of the 
physical world those numbers are correspond to, they would (1) 
have little to no guidelines for constraining the types of mathe-
matical reasoning appropriate to perform with that representa-
tion and (2) have no way of translating the results of even simple 
mathematical operations on the representation into actions in 
the real world. Construals thus function as a “bridge” between 
the mathematical domain where we construct and manipulate a 

representation of the target and the physical domain wherein we 
intervene upon and collect measurements from it. As such, they 
are central to the practice of model-based scientific research.

On Weisberg's  (2013) account, a model's construal consists of 
three components: assignment, scope, and fidelity criteria. The 
assignment of a model explicitly specifies how parts of the tar-
get system are mapped onto parts of the model; in other words, it 
states what each variable in the model is supposed to correspond 
to inside an organism's head. The scope of a model specifies which 
aspects of the target the model aims to represent (and, by exten-
sion, which aspects it does not aim to represent). Considering a 
model's intended scope is essential for determining which types 
of measurements from the target are meaningful for assessing the 
performance of the model. The final components of a construal, 
fidelity criteria, are the benchmarks that model users reference in 
order to determine whether they have a “good” model of their tar-
get. Our case study in Section 4 demonstrates how differences in 
fidelity criteria between different subgroups of researchers using 
the DDM have resulted in current “competing” forms of the model.

A point we wish to emphasize is that both a model's structure 
and its construal are the products of decisions made by users 
who build and apply the model to data. And just like in cogni-
tive decision-making, these representational decisions—deter-
mining what properties of the target to include in the model and 
how to represent those properties mathematically (Harvard and 
Winsberg 2022)—are subject to variation across users in different 
subfields, across users within the same subfield, and even within 
a single user applying the same model in different contexts. We 
argue that this variability reflects the multifaceted roles that mod-
els play in scientific reasoning, and that understanding the factors 
contributing to variability in representational decision-making is 
essential for informed, critical engagement with model-based sci-
entific research. Echoing recent work in philosophy (Danks 2015; 
Potochnik and Sanches de Oliveira  2020; Weisberg  2013; 
Winsberg and Harvard  2024) and computational neuroscience 
(Blohm et al. 2020; Kording et al. 2018), we aim to demonstrate 
how model users' reasoning goals—which aspect(s) of the tar-
get they aim to reason about and how they wish to perform that 
reasoning via the model—are primary drivers of variability in 
representational decisions. Because representational decisions 
determine both a model's structure and its construal (which it-
self specifies fidelity criteria), this position implies that reasoning 
goals shape the model-based research process all the way down to 
quantitative model comparison procedures; we provide concrete 
examples in Section 4.

One might worry that permitting even quantitative model com-
parison procedures to vary according to a user's goals might be 
too flexible of a philosophy of modeling for the practicing sci-
entist. On our view, however, this position is an inevitable con-
sequence of the fact that most—if not all—formal models are 
incomplete representations of their target systems. Because this 
property of models makes them technically false with respect to 
their target (Frigg and Hartmann 2020; Wimsatt 1987), model 
users cannot rely simply on the “truth” or falsity of models in 
order to select the best among them. A prominent line of rea-
soning in philosophy thus suggests that models be evaluated by 
their adequacy for purpose rather than verisimilitude (i.e., true or 
accurate representation of the target) alone (e.g., Parker 2020).5 

 14609568, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.70098 by A

ri K
houdary - U

niversity O
f C

alifornia Irvine L
ib , W

iley O
nline L

ibrary on [17/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 18 European Journal of Neuroscience, 2025

By positing that the goal of modeling is to identify represen-
tations that are useful, rather than strictly-speaking true, the 
adequacy-for-purpose view further emphasizes the central role 
of reasoning goals in model-based science: They define the pur-
pose against which a model's adequacy is evaluated. Because 
different models are built and/or applied in the service of dif-
ferent reasoning goals, it is desirable to allow fidelity criteria to 
vary according to the reasoning goal being pursued. The task of 
model-based science thus becomes identifying which represen-
tations are adequate for which purposes and, at a higher level, 
identifying the reasoning goals that are most useful for making 
progress on particular scientific questions.

Further motivation for the adequacy-for-purpose view comes 
from the heavy use of idealization in formal models of com-
plex systems (Cartwright 1983; Potochnik 2018). When scientists 
build idealized representations of their target systems, they build 
representations that intentionally misrepresent features of their 
target in order to make reasoning about it easier. It can be use-
ful to distinguish between omissive and distortive idealizations: 
those that remove certain properties of the target from the rep-
resentation (e.g., choosing not to represent neural dynamics in a 
cognitive model) and those that represent known properties in a 
way that is known to be inaccurate (e.g., assuming that observers 
have perfect knowledge of the environment), respectively. These 
complementary forms of idealization—at play in nearly all formal 
models—permit users to build representations that “selectively 
attend” to components of the objects that the model user wishes 
to reason about (Portides 2021). In doing so, the model reduces 
the complexity of the target such that reasoning about it becomes 
more tractable for the model user. The task of modeling, again, 
becomes identifying the degree and type(s) of idealizations that 
are most useful for one's purposes. The rest of this article aims to 
provide tools for thinking about this set of decisions.

2.2   |   Tools for Thinking About Models as 
Explanations

Equipped with some tools for thinking about models as repre-
sentations, we next turn to research in computational neuro-
science and philosophy to consider the types of reasoning goals 
enabled by formal models. Kording et al. (2018) helpfully iden-
tify 12 different reasoning goals most commonly pursued in 
computational neuroscience, while noting that “it is impossible 
to produce an exhaustive list” (p. 3). Wimsatt  (1987) also pro-
poses “Twelve things to do with false models” (pp. 7–8) based on 
his work with formal models in engineering. That these two lists 
minimally overlap both reflects how broad the space of possi-
ble reasoning goals is in model-based science and highlights the 
utility of integrating insights developed independently in neu-
roscience and philosophy. Based on the argument we develop 
in the case study, we will focus our discussion here on reason-
ing goals related to explanation.6 First, we discuss how formal 
models give explanations of empirical targets and then contrast 
different types of explanations formal models can give.

Foundational work in the philosophy of scientific explanation 
distinguishes between an observation or phenomenon that sci-
entists aim to explain (i.e., an explanandum) and the explana-
tion that scientists give of it (i.e., the explanans; Hempel and 

Oppenheim 1948).7 When a formal model is used as an expla-
nation for some explanandum, the model's structure functions 
as the explanans (Weisberg  2013). In other words, the target's 
behavior is explained by virtue of the structure of its formal/
mathematical representation. Weisberg  (2013) argues that, in 
computational models, this structure is comprised of the pro-
cedures (or algorithms) that specify how an input state is trans-
formed into an output, a position we adopt here as well. On this 
account, computational cognitive models explain the behavior 
of their targets by relating (or “mapping”) changes in observed 
behavior onto changes in the parameter values and/or config-
urations of the latent procedures represented in the model's 
structure. This mapping can be achieved both by simulating the 
target's behavior on different parameter values or configurations 
of the model's structure (i.e., “simulation”) and/or by identifying 
parameter values of components of the structure that maximize 
the likelihood of observing a particular set of observations from 
the target (i.e., “model fitting”).

At the heart of both these approaches to model-based explana-
tion is the notion of a model “capturing” properties of its target. 
Weisberg (2013) proposes that scientists use two different types 
of fidelity criteria to assess whether—and in what ways—a 
model “captures” features of its target. Dynamical fidelity refers 
to the quantitative similarity between measurements taken of 
the target and numerical estimates generated by the model (e.g., 
its numerical “goodness-of-fit”), whereas representational fidel-
ity refers to how closely a model's structure matches the causal 
structure of the real-world phenomenon (Weisberg  2013). For 
our purposes, the relevant sense of “causal structure” is synon-
ymous with the “type of explanation” a user wishes to attain by 
reasoning with the model, a topic we treat in the next paragraph. 
We will call our notion “explanatory fidelity” to differentiate it 
from Weisberg's (2013) causal notion of representational fidelity. 
Importantly, these notions of fidelity are defined independently 
of the methods used to evaluate them, meaning that model users 
have to make representational decisions in order to evaluate the 
fidelity of their model: deciding what kind of criteria are most 
appropriate for their overall goals and how they wish to evaluate 
their model with respect to those selected criteria.

Our case study in Section 4 demonstrates the utility of fidel-
ity criteria as tools for thinking about model-based research. 
In particular, we highlight how the two “competing” forms of 
the DDM (further described in Section  3) reflect differences 
in fidelity criteria between communities of scientists using 
the model, and argue that these differences reflect the dif-
ferent explanatory aims of each community. To do this, we 
make use of a popular taxonomy that distinguishes what, 
how, and why approaches to giving explanations (Dayan and 
Abbott 2005; Ross and Woodward 2023). The “what” approach 
focuses on characterizing how the target behaves under var-
ious circumstances, and is commonly thought to be the goal 
of descriptive models that are not generally thought to be ex-
planatory. The “how” approach focuses on decomposing a 
target's behavior into its constituent parts and processes, and 
can be said to explain the behavior of the target by virtue of 
those constituent components; this is commonly considered 
the goal of mechanistic models in neuroscience (Craver 2007; 
Dayan and Abbott  2005). The “why” approach focuses on 
identifying properties of the target that require it to behave in 
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particular ways under particular circumstances; this is how 
we understand the goal of normative models in neuroscience 
(Anderson 1990; Dayan and Abbott 2005).

In computational neuroscience, labels from the above taxonomy 
are commonly used to refer to the entirety of a model's structure. 
Our case study, however, demonstrates that these properties can 
also be applied to individual components of a model's structure, 
such that a particular stage in the input-transformation process 
can be normative (or mechanistic, or descriptive) even if the 
structure as a whole is not. Although this perspective might 
complicate the usage of the taxonomy, it reflects growing agree-
ment among philosophers that not all components of a model 
need to contribute to the user's ultimate purpose in the same 
way (Weisberg 2013). Some model components, for example, are 
included simply because the fitting process would be intracta-
ble without them; they are thus included for practical reasons. 
Other components might be included because a user thinks that 
component is important for their ability to reason about their 
target with the model, but particular details about the com-
ponent might be irrelevant for how it ultimately figures into 
the primary reasoning goal (e.g., the non-decision term in the 
DDM). Ideally, model users are explicit about how they intend 
for each component of their model to be construed with respect 
to their target, and models are constructed in such a way that 
these “convenience variables” are not central to the explanation 
a particular model provides. But because this is not always the 
case, it is crucial that users keep the heterogeneity of justifica-
tions for representational decisions in mind when engaging with 
the products of model-based research.

2.3   |   Tools for Thinking About Models as 
Normative Explanations

This final section of the toolkit provides a brief conceptual anal-
ysis of the practice of normative modeling. Our motivations for 
doing so are (1) to equip readers with the necessary resources 
for engaging with key topics in the case study, (2) to articulate 
our own perspective on the role of normative models in compu-
tational cognitive neuroscience, and (3) to give readers tools for 
thinking about a concept that figures heavily in both scientific 
and meta-scientific debates about perceptual decision making 
(e.g., Rahnev and Denison 2018).

Like the term “model,” the term “normative” has a number of 
different but closely related meanings. In general, a normative 
statement is one that prescribes a particular course of action 
in a particular scenario. These statements (or logical attitudes) 
thus take the form: If your goal is X, then you ought to Y. Norms 
thus create a standard or benchmark for evaluating behaviors 
as good/correct or bad/incorrect. Crucially, as the logical form 
makes clear, the accuracy or “goodness” of a particular action 
is determined relative to a particular goal. Normative models 
in computational cognitive science leverage this property to 
offer explanations about why the target behaved as it did. Users 
achieve this goal by formally specifying

1.	 An objective function: the problem the target is trying to 
solve (e.g., choosing between two options in the shortest 
possible amount of time)

2.	 The environment in which it is tasked with solving that 
problem (e.g., one with or without feedback after each 
choice)

3.	 The procedure that a target uses to solve that problem (e.g., 
sequential sampling to a fixed threshold).

Optionally, users can add a fourth component capturing any 
constraints they wish to impose on the procedure (e.g., leakage 
or loss of accumulated evidence over time).8 This comprehen-
sive formal representation allows users to identify the logical or 
mathematical limit of the specified target's ability to solve the 
specified problem in the specified environment, that is, optimal 
behavior on the experimental task. A common explanatory ap-
proach is thus to state that the target exhibited a particular pat-
tern of behavior because it is the optimal solution to the formally 
specified problem.

This type of optimality explanation is made possible by 
formal frameworks, which can be defined as a set of axioms/pos-
tulates (i.e., statements accepted as true), formal/mathematical 
objects, and rules constraining the relationships among those 
objects. In other words, formal frameworks offer model users 
a “grammar” for expressing questions and answers in a format 
that permits quantitative assessment (Guest and Martin  2021; 
Press et  al.  2022). Sutton and Barto's  (2018) textbook on rein-
forcement learning offers a helpful example9:

The MDP [Markov decision process] framework 
is a considerable abstraction [idealization] of the 
problem of goal-directed learning from interaction. 
It proposes that whatever the details of the sensory, 
memory, and control apparatus, and whatever 
objective one is trying to achieve, any problem of 
learning goal-directed behavior can be reduced to 
three signals passing back and forth between an 
agent and its environment: one signal to represent 
the choices made by the agent (the actions), one 
signal to represent the basis on which the choices 
are made (the states), and one signal to define the 
agent's goal (the rewards). 

(p. 50, bracketed text added)

The above quotation also highlights the central role that ide-
alization plays in normative modeling. Because axioms of for-
mal frameworks primarily function to promote mathematical 
expressivity, modelers often have to make a number of distor-
tive assumptions about their targets in order to build normative 
models of their behavior. A common example is the widely used 
assumption that agents have perfect knowledge of the statistical 
properties of their environment (e.g., Wald and Wolfowitz 1948). 
This assumption exemplifies a distortive idealization of the 
target because modelers do not often think that the target ac-
tually has this perfect knowledge—either in the real world or 
in the experiment—but still represent their target in this way 
because it allows them to compute a normative benchmark for 
performance on the task. Our case study demonstrates two ap-
proaches users of the DDM have taken when the assumptions of 
existing models are inadequate for their reasoning goals.
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The pervasiveness of idealization in normative models compli-
cates the question of how to interpret the failure of a normative 
model to explain its target. Discussions concerning the “Great 
Rationality Debate” in economic decision making10 suggest 
three classes of possible interpretations: (1) that the target is 
generally suboptimal on this task, (2) that more empirical data 
are needed to understand what factors drive suboptimal perfor-
mance on this task, or (3) that the formal definition of optimality 
is inadequate for explanatory purposes. A complementary debate 
has recently begun in the study of perceptual decision making, 
with researchers questioning broadly scoped claims about the 
optimality of perceptual decisions. Rahnev and Denison (2018) 
comprehensively review evidence demonstrating that humans 
behave suboptimally on every type of task where their behavior 
has been considered optimal. The authors do not suggest that 
the data license an inference that humans are perceptually sub-
optimal (option 1 from the rationality debate), but instead that 
the field drop its emphasis on optimality in favor of building de-
tailed models that capture all aspects of the perceptual decision 
process (a model-focused version of option 2 from the rationality 
debate).

Rahnev and Denison  (2018) identify two conceptual chal-
lenges of normative models that motivate their suggestion. 
The first pertains to the variability of optimality definitions 
across model specifications, and the second pertains to the 
utility of optimality claims for predicting and explaining be-
havior. At a broader level, Rahnev and Denison's  (2018) cri-
tique can be understood as a much-needed reminder for the 
field that optimality is not a property of targets that can be 
“discovered” using scientific methods because it is not some-
thing that exists independently of the mathematical models 
that are used to define it. This is exemplified by optimality 
claims being inherently contextual in nature (i.e., dependent 
on formal specifications of the objective function and the 
environment) and based on idealized representations of the 
target. Our suggestion, in line with option 3 from the ratio-
nality debate, is that users leverage these properties to build 
normative models that better align with their goals in reason-
ing about a target. Exploring normative solutions to formally-
specified questions not yet addressed in the literature is a 
principled and straightforward way to advance theorizing in 
neuroscience, and often motivates the creation of novel exper-
iments that measure the target's behavior in these differently 
idealized settings (e.g., Harhen and Bornstein 2023; Khoudary 
et al. 2022). Our case study demonstrates how this approach 
to normative modeling has been pursued by communities of 
users of the DDM.

3   |   A Philosophical Introduction to the DDM

We now turn to the target of our case study: the diffusion de-
cision (or drift diffusion) model of decision making (DDM). 
The DDM is one member of a family of models that represent 
decision-making as a process of evidence accumulation, or add-
ing up information over time. These models typically assume 
that decision-makers are forced to decide between two possi-
ble options (i.e., two-alternative forced decision-making), but 
variants that permit reasoning about more than two options 
continue to be developed (e.g., Tajima et  al.  2019; Villarreal 

et al. 2024). Models in this family are conceptually united by 
the sequential sampling framework in psychology and neu-
roscience (Forstmann et  al.  2016; Gold and Shadlen  2007; 
Ratcliff et  al.  2016; Shadlen and Shohamy  2016), which itself 
draws on the framework of sequential analysis in statistics 
(Barnard 1946; Wald 1945).11 The conceptual framework of se-
quential sampling posits that humans and other animals make 
decisions by continuously sampling information from an evi-
dence source, extracting and integrating decision-relevant in-
formation over time, and committing to one of the options once 
the accumulated evidence surpasses a threshold value. The 
formal framework of sequential analysis permits specifying 
normative solutions to the accumulation process (Section 2.3), 
and thus can be used to build models that optimize the tradeoff 
between decision accuracy and deliberation time (i.e., the 
speed-accuracy tradeoff ). Importantly, however, not all models 
in this family are normative. A major strength of the sequential 
sampling framework is the generality and flexibility of its con-
ceptual entities (e.g., “evidence”), both of which permit users to 
specify a wide range of models that can be construed at various 
spatiotemporal scales.

In what follows, we use Weisberg's (2013) notions of structure, 
scope, and assignment both to offer a philosophical introduction 
to the DDM. On Weisberg's account, a construal consists of a 
scope, assignment, and fidelity criteria; we use this final compo-
nent to structure the case study in Section 4.

3.1   |   Formal Structure of the DDM

Recall that on Weisberg's  (2013) account, the structure of a 
model refers to the mathematical objects and relations that com-
prise the formal representation of a target. In the DDM, this 
representation consists of components commonly termed start-
ing point, decision variable, drift rate, internal noise, decision 
threshold, and non-decision time. This formal representation is 
presented graphically in Figure 1. Mathematically, the evidence 
accumulation process operating in the DDM is expressed as

where x(0) represents the starting point of the decision variable, 
dx represents a change in the decision variable x over a unit of 
time dt, A represents the drift rate, and cdW represents noise/
diffusion in the accumulation process which follows a normal 
distribution with mean 0 and variance c2dt (Bogacz et al. 2006). 
This mathematical structure is equivalent to a random walk in 
probability theory or Brownian motion in physics. In the DDM, 
the structure commonly corresponds to a continuously updat-
ing log likelihood ratio quantifying the probability that one of 
the two possible outcomes is correct, based on the evidence ob-
served thus far. In other words, the decision variable reflects the 
time-evolving difference of evidence in favor of either option. 
The sampling/accumulation process ends when the value of the 
decision variable x exceeds a scalar threshold value z, at which 
point the decision maker commits to the choice corresponding 
to the threshold value reached (z or -z). The procedure whereby a 
sequential sampling model specifies how the accumulation pro-
cess will be terminated and converted into a choice can be called 
the decision rule of the model.

(1)dx = Adt + cdW, x(0) = 0
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This structure permits the DDM to generate predictions of both 
which option a decision-maker will choose and how long it takes 
them to commit to that choice on a trial-by-trial basis. This is 
what is meant when the DDM is referred to as a joint model of 
choices and reaction times. Importantly, because of the noise 
term in the structure, the DDM assumes that choice behavior is 
stochastic (i.e., subject to random variation). This structure per-
mits the DDM to generate entire reaction time (RT) distributions 
corresponding to correct and incorrect decisions. In Section 4.3, 
we demonstrate how the ability to reproduce empirical RT dis-
tributions for correct and incorrect decisions was one of the 
primary dynamical fidelity criteria motivating changes to the 
structure of the DDM.

When the DDM is used to fit behavioral data, the starting point, 
drift rate, threshold, and non-decision time (Figure 1) are com-
monly treated as “free parameters,” meaning that the model fit-
ting process aims to identify the values of these components that 
maximize the likelihood of the data being fitted. Free parame-
ters can be contrasted with “model variables” which are com-
ponents specified in the model whose values are defined by the 
user prior to model fitting (e.g., the value of the diffusion term 
in Equation  1). Because the DDM formalizes the relationship 
between choices and RTs, the quantitative model fitting process 
is often tasked with fitting measurements from both of these el-
ements of behavior. The resulting parameter values thus reflect 
the model's best estimate of the “settings” of the decision process 
that generated a particular pattern of target behavior. Based on 
the research question, it is often desirable to permit one or more 
of the free parameters to vary as a function of experimental con-
dition; this is what permits decomposing behavioral effects of 
experimental interventions into specific changes in the configu-
ration of the latent decision process.

The structure we describe above corresponds to the “original” 
DDM (Stone  1960). Presently, there are two variations of this 
original DDM that are most prominently used. Both of these 
forms retain the evidence accumulation process described in 
Equation  1, but posit different procedures within which that 
accumulation process generates choice behavior. The first pro-
cess—commonly called the “extended DDM”—allows the drift 
rate, starting point, and non-decision time components to vary 
probabilistically on a trial-by-trial basis (Figure  1A). The sec-
ond form—commonly called a “collapsing bound” diffusion 
model—posits that the threshold value for committing to a 
choice decreases over the course of a single decision (Figure 1B). 
This latter form initiated the “collapsing bound debate” that we 
conceptually analyze in Section 4.

3.2   |   Structure of the Random Dot Motion Task

Much of the empirical success of the DDM is due to the devel-
opment of the random dot motion discrimination task (Britten 
et al. 1992). In this task, observers are presented with a display 
of stochastically moving visual elements (usually dots), some 
proportion of which consistently move from one direction to an-
other (e.g., left to right). On each trial, observers report which 
direction of motion appeared on the display, a judgment whose 
difficulty scales with the proportion of consistently moving 
dots (i.e., the coherence of the stimulus; Palmer et  al.  2005). 
Importantly, although the overall proportion of coherently mov-
ing elements remains constant within a trial, the actual elements 
whose position is displaced vary randomly with each refresh of 
the digital display. This “limited lifetime” property of the stim-
uli ensures that observers cannot make the decision via smooth 
visual pursuit: They must continuously sample the stimulus in 

FIGURE 1    |    Graphical depictions of two standard forms of a diffusion model of speeded two-alternative choice. Both models assume that ob-
servers sequentially sample information, accumulate the difference in evidence between the two choice options, and commit to a decision once the 
accumulated evidence reaches a critical value defined by the decision boundary/threshold. Standard interpretations of the key variables are provided 
in the main text. (A) The extended drift diffusion model. This form of the model features parameters whose values vary trial-by-trial but remain 
fixed within the course of a single trial. Starting point (yellow) and non-decision time (red) values are drawn from uniform distributions and drift 
rates (blue) are drawn from normal distributions. Threshold values (green) are constant within a trial, and can be allowed to vary as a function of 
experimental condition and/or participant. (B) The diffusion model with collapsing decision boundaries. This form of the model features parameters 
whose values are effectively fixed trial-by-trial and decision boundaries whose values decrease (“collapse”) over the course of a single trial. Drift rate 
and, in some models, starting point are permitted to vary as a function of experimental condition but are assumed to have fixed effects across trials 
within an experimental condition.

 14609568, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.70098 by A

ri K
houdary - U

niversity O
f C

alifornia Irvine L
ib , W

iley O
nline L

ibrary on [17/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 18 European Journal of Neuroscience, 2025

order to accumulate evidence about the overall direction of co-
herence motion.

This task is useful for a number of reasons. First, it requires in-
tegrating evidence over time, so researchers have good reason 
to believe that the task utilizes the core mechanism of evidence 
accumulation (although see Stine et  al.  2020 for challenges to 
this idea). Next, it is simple enough that rodent, primate, and 
human observers are all capable of performing it (Hanks and 
Summerfield  2017), allowing for powerful cross-species com-
parisons. Finally, it permits a clean one-to-one mapping of 
stimulus properties onto components of the model, thus giving 
both experimenters and theorists alike a powerful tool for prob-
ing decision making processes under various tightly controlled 
circumstances. The next subsection offers an overview of the 
wide-ranging pieces of empirical support for the DDM, the vast 
majority of which were generated using behavior in some vari-
ant of a motion discrimination task.

3.3   |   Assignment of Components in the DDM

Recall that, on Weisberg's  (2013) account, a model's assign-
ment specifies what each component of a model's structure is 
meant to represent with respect to its target. It is important 
to note the standard assignment of components in the DDM 
that we describe here is specified with respect to the random 
dot motion task. Different applications of the DDM warrant 
slightly different assignments of model components, a point 
that can be overlooked in the meta-scientific writing that touts 
the utility of models for standardizing interpretations of be-
havior across task contexts. While it is true that the structure 
of the DDM provides common grounding for different mea-
surements of behavior, how that structure is construed with 
respect to the target crucially depends on the measurements 
a user has of that target. For this reason, we highly encourage 
users to think critically about how components of the DDM 
are assigned to neural and/or cognitive processes as measured 
within a particular task setting (Bompas et al. 2023; Jones and 
Dzhafarov 2014).

With those caveats in mind, we can now introduce the stan-
dard assignment of DDM components in the context of a mo-
tion discrimination task. The threshold separation variable 
defines the quantity of accumulated evidence required for an 
observer to commit to a choice, and thus is commonly inter-
preted as reflecting the observer's response caution or decision 
policy under different speed-accuracy regimes. The starting 
point variable defines the initial value of the decision variable, 
and thus is conventionally interpreted as quantifying the bias 
an observer has toward one of the two choice options. The de-
cision variable represents the decision maker's internal rep-
resentation of accumulated evidence, sometimes called their 
time-evolving belief about the correct answer. The drift rate 
quantifies the rate of change in the decision variable per unit 
time, and thus is commonly thought to reflect the “quality” 
of the internal evidence driving a particular decision.12 The 
non-decision time variable is intended to aggregate various 
kinds of delays in response times due to processing occurring 

before and after evidence accumulation. Types of processes 
believed to contribute to the non-decision time include encod-
ing of sensory information and initiating a motor response; 
in this sense, it can be thought of as a “convenience param-
eter,” though some work has successfully decomposed this 
“non-”decision time into decision-relevant components (e.g. 
Kraemer and Gluth  2023; Yoo and Bornstein  2024). Finally, 
the internal noise variable is thought to reflect imperfections 
in the encoding and representation of sampled evidence, and 
also can be thought of as a “convenience variable” because its 
values are commonly fixed when the DDM is fit to human data 
(Ratcliff et al. 2016).

3.4   |   Empirical Scope of the DDM

On Weisberg's  (2013) account, the scope of a model is the 
component of its construal that specifies which aspects of the 
target a user aims to capture in the model. Models thus have 
an intended empirical and/or theoretical scope and are ini-
tially evaluated with respect to those originally intended ex-
plananda. One of the reasons why the DDM is considered so 
successful is because it has continued to display explanatory 
adequacy for targets well outside its originally intended scope 
(Ratcliff  1978). Importantly, the DDM was developed as a 
purely cognitive model—nothing about the original construal 
mentioned neural activity or measurements as a desired com-
ponent for the model to capture. It was not until the random 
dot motion task was developed by Britten et al. (1992) that the 
DDM was used also to reason about neural processes involved 
in two-alternative decision making.

Careful early studies conducted on non-human primates of-
fered the first pieces of evidence for the DDM as a model of 
neural activity (Britten et  al.  1996; Gold and Shadlen  2001; 
Roitman and Shadlen  2002; Shadlen and Newsome  2001). 
These foundational studies provided evidence suggesting 
that both single-unit and population-level recordings from 
distinct cortical regions exhibit activity that strongly resem-
bles and correlates with distinct components of the DDM (see 
Gold and Shadlen 2007 for a review of this line of work). Since 
these early findings, the DDM has been used to link behavior 
with population-level neural responses in rodents (Brunton 
et al. 2013; Hanks et al. 2015; Khilkevich et al. 2024), as well 
as intracranial recordings, scalp oscillations, and blood oxy-
gen level dependent signals in humans (Krueger et  al.  2017; 
O'Connell and Kelly  2021; Polanía et  al.  2014; Weber 
et al. 2024). The early and growing evidence for the DDM as 
a model of the neural processes generating decision behavior 
has even led some researchers to posit evidence accumulation 
as a basic mechanism of decision making that is conserved 
across species (Hanks and Summerfield 2017).

While this broad empirical scope lends a great deal of sup-
port to the DDM as a theory of speeded decision making, it 
can also result in confusion, ambiguity, and/or disagreement 
about precisely what inferences a user can make on the basis 
of applying the DDM to data. For this reason, among sev-
eral others, it is desirable for modelers to explicitly discuss a 
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model's intended construal when communicating their find-
ings from the model.

4   |   Reasoning Goals and Representational 
Decisions in the Collapsing Bounds Debate

In this section, we further demonstrate the utility of our phil-
osophical tools for reasoning by using them to provide a novel 
conceptual analysis of the so-called “collapsing bounds” de-
bate in the DDM. As shown in Figure 1, this debate concerns 
whether the threshold in the DDM ought to remain fixed 
over the course of a single decision (Figure 1A) or change as 
a function of time spent accumulating evidence (Figure 1B). 
Importantly, anyone who uses a DDM to explain or interpret 
behavioral data necessarily has to “take a stance” in this de-
bate by deciding whether to use fixed or collapsing boundar-
ies in their model. This ubiquitous representational decision 
is complicated by two facts: (1) Each form of the model makes 
highly accurate predictions about both behavioral and neural 
observations, and (2) each form has been proven, under differ-
ent definitions of optimality, to optimize the two-alternative 
decision problem. Accordingly, much ink has thus been 
spilled about which form “correctly” represents the decision 
process (Evans et  al.  2017; Hawkins et  al.  2015; Miletić and 
van Maanen  2019; Palestro et  al.  2018; Ratcliff et  al.  2016). 
Our review of the philosophy literature, however, suggests 
that this question is misguided.

We argue that the two forms of the model implicated in the debate 
offer complementary—rather than competing—explanations of 
the processes generating speeded two-alternative choices. To do 
this, we demonstrate how each form was developed with respect 
to different sets of fidelity criteria that reflect the different ex-
planatory aims (or “styles,” Potochnik and Sanches de Oliveira 
2020) of its users. Although the community of DDM users is 
broad and heterogeneous, we focus on a distinction between 
two subgroups implicated in the debate: cognitive psychometri-
cians and theoretical neuroscientists. Cognitive psychometrics, 
as a field, aims to develop models that offer interpretable and 
statistically robust decompositions of observed behavior into la-
tent cognitive processes. By extension, the primary explanatory 
fidelity criterion motivating representational decisions is that 
of parsimony: striking a balance between goodness-of-fit (i.e., 
dynamical fidelity) and model simplicity (e.g., Vandekerckhove 
et al. 2015). Theoretical neuroscience, by contrast, aims to ex-
plain behavior and brain function using normative models based 
on formal principles (e.g., Abbott 2008), the most common of 
which is optimality (see Section 2.3). Models developed toward 
this end still must exhibit dynamical fidelity with respect to the 
relevant patterns of behavior, but they might do so by using for-
mal representations that are more mathematically complex than 
those preferred by psychometricians.

Our case study explicates how reasoning goals have shaped 
representational decisions along three complementary dimen-
sions of the collapsing bounds debate: definitions of optimal-
ity (Section 4.1), structural modifications to the original DDM 
(Section 4.2), and formal model comparisons (Section 4.3).

4.1   |   Two Types of Optimality in the DDM

Recall that the DDM establishes a formal link between decisions 
and the time it takes to make them; that is, it is a joint model 
of choices and reaction times. The speed–accuracy tradeoff in 
the DDM is determined by the threshold, the value of which 
specifies the “decision rule”: at each point in time, determining 
whether an agent should keep sampling information or commit 
to a choice on the basis of already accumulated evidence. Higher 
thresholds always result in increased choice accuracy, but often 
at the cost of taking longer to make a decision. Conversely, lower 
thresholds allow subjects to make decisions more quickly but 
often come at the expense of a greater number of errors. Formal 
definitions of optimality in the DDM thus aim to define a quan-
titative benchmark for determining whether decision makers 
use threshold values that maximally balance decision speed and 
accuracy. Optimality therefore figures prominently in the col-
lapsing bounds debate precisely because it is a debate about the 
appropriate structure of thresholds in the DDM.

The rest of this subsection demonstrates how each threshold 
structure in the debate (fixed/static or collapsing/dynamic) 
meets different definitions of optimal speed-accuracy tradeoffs. 
Understanding the sense in which each form is optimal is cru-
cial for understanding when the DDM gives a normative ex-
planation and what notion of normativity (or optimality) the 
explanation invokes. Recall that normative models use optimal-
ity to answer the question of why the target behaved in a par-
ticular way: It deployed a process that optimizes the objective 
function (Section 2.3). The explanatory fidelity of a normative 
model thus corresponds to how well its objective function—and 
the assumptions required to prove its optimality—align both 
with properties of the target and how the user wishes to reason 
about them using the model. We turn next to demonstrating how 
and why objective functions in normative DDMs have changed 
over time, and how that change has resulted in multiple defini-
tions of optimality that are met by different forms of the DDM.

4.1.1   |   SPRT Optimality: Definition and Idealizing 
Assumptions

The first formalization of an optimal speed-accuracy tradeoff 
comes from the sequential probability ratio test (SPRT). The 
SPRT was developed independently by Barnard  (1946) and 
Wald (1945) originally for purposes of quality control in man-
ufacturing. Shortly after its introduction, the SPRT was math-
ematically proven to minimize a weighted, linear sum of 
decision time and error rate (Wald and Wolfowitz 1948; Bogacz 
et  al.  2006). The optimality of the SPRT as a decision process 
explicitly motivated the development of the original DDM 
(Stone 1960; Laming 1968), which is the continuous-time equiv-
alent of the SPRT. In both the SPRT and the original DDM, the 
decision variable is a running estimate of the log-likelihood ratio 
of one choice option relative to another, which is equivalent to 
the difference of evidence in favor of each choice. This decision 
variable continues to accumulate until it surpasses a threshold 
quantity that is fixed both within a single decision and across 
different decisions.
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Although the SPRT was immensely useful as a starting point for 
developing the large and successful family of sequential sampling 
models, its explanatory fidelity has been called into question for a 
number of reasons. First, the SPRT is only optimal in cases where 
the signal-to-noise ratio of sensory evidence is identical for every 
choice (i.e., in a homogeneous environment; Moran 2015). In the 
real world and in most common laboratory settings, the strength 
of sensory signal will vary from decision to decision, and the SPRT 
does not achieve the optimal speed–accuracy tradeoff in these 
heterogeneous environments. Next, the SPRT is only optimal if 
observers have an infinite amount of time to sample evidence be-
fore committing to a choice (Frazier and Yu 2007). But again, for 
speeded perceptual decisions made in real life and the lab, there is 
often a hard limit on how long an observer can keep sampling (e.g., 
if the real-world stimulus is no longer present in the visual field or 
if the laboratory trial times out). Finally, implementing the optimal 
speed–accuracy tradeoff using the SPRT requires that observers 
define ahead of time either their desired level of average decision 
speed or average decision accuracy (Bogacz et al. 2006). Once this is 
done, employing the SPRT process ensures that an agent will make 
decisions that either maximize accuracy for that pre-specified de-
cision time, or minimize decision time for that pre-specified level 
of accuracy. The assumption of observers pre-defining some level 
of speed or accuracy that they wish to optimize might be plausible 
in some decision settings, but it also creates a methodological issue 
of optimality being specific to each observer's internal criteria. 
This issue is not insurmountable, but it does create an optimality 
benchmark that can only be evaluated after estimating the value of 
a free parameter individually for each observer.

4.1.2   |   Reward Rate Optimality: Definition 
and Idealizing Assumptions

The above-listed limitations of the SPRT motivated the devel-
opment of reward rate as an alternative metric for assessing the 
optimality of speed-accuracy tradeoffs in two-alternative deci-
sion making. Reward rate is defined as the average expected re-
ward (or proportion of correct responses) divided by the average 
amount of time that elapses between each decision (Gold and 
Shadlen 2001, 2002; Bogacz et al. 2006). Accordingly, it corre-
sponds to the change in probability of being rewarded and/or 
correct per unit of time.

A major advantage of reward rate relative to the SPRT is that 
it is a parameter-free optimality benchmark: that is, assessing 
the optimality of behavior on the individual or group levels does 
not require estimating the weights that different observers place 
on speed versus accuracy. Reward rate can also be optimized in 
decision environments that limit sampling time and that are het-
erogeneous, thus overcoming the conceptual issues faced by the 
SPRT. Further, the reward rate formalization of speed-accuracy 
tradeoffs has two properties that make it a more powerful the-
oretical tool. First, its representation of time permits theoreti-
cally and empirically investigating how different environmental 
dynamics shape choice behavior, which is not possible with the 
SPRT. Second, by invoking the notion of reward, it aligns sequen-
tial sampling models more closely with other formal models of 
decision making (e.g., expected utility theory) which enhances 
the prospects for inter-theoretic model building (more on this in 
Section 4.2.2). All of these properties enhance the explanatory 

fidelity of a reward rate formalization of the speed-accuracy 
tradeoff relative to the SPRT.

Reward rate has thus become the standard formalization of 
speed-accuracy tradeoffs in the sequential sampling literature. 
We have two things to note about this. First, when a community 
of model users adopt a standard formalism for a key concept in 
their research, they often cease to make explicit both its con-
strual with respect to the target (Weisberg 2013) and, we argue, 
their justification for that representational decision. This means 
that when model users communicate findings using the stan-
dardized notion, they can write, for example, “We assume that 
the aim of the decision maker is to maximize the net reward 
over all trials” (Drugowitsch et al. 2012, p. 3620) without need-
ing to explain why they made this particular assumption and 
what alternative assumptions might be. A core argument of this 
article is that these standardized formalisms are hallmarks of 
“healthy” model-based science, and that users must remain cog-
nizant of their necessarily incomplete nature in order to avoid 
limiting their scientific imagination.

Second, and relatedly, reward rate optimality rests upon an as-
sumption that all properties of the environment (distribution of 
signal strengths, timing, reward structure, etc.) are known to 
the observer. As shown above, this distortive idealization gives 
model users a more powerful formalism for reasoning norma-
tively about the speed-accuracy tradeoff in two-alternative 
decision making. Another core goal of this article is to demon-
strate that there are a variety of ways to engage with idealizing 
assumptions of formal models. As we show next in Section 4.2.1, 
model users can choose not to pursue normative reasoning goals 
that require strong idealizations about their target and instead 
build models that aim to maximize dynamical fidelity with as 
minimal assumptions as possible. Alternatively, as we show in 
Section 4.2.2, model users can posit less-distortive (or “relaxed”) 
idealizations about the target and develop new models that offer 
normative solutions to less-idealized problems. A third, related 
approach is to investigate what properties of the target cause 
it to deviate from predictions of normative models (e.g., Balci 
et al. 2011; Holmes and Cohen 2014; Drugowitsch et al. 2016). 
Findings from this last line of research can then be integrated as 
constraints on future normative models, as in resource-rational 
approaches to cognitive modeling (Lieder and Griffiths  2019; 
Section 2.3).

Altogether, this section articulated the role of optimality in the 
collapsing bounds debate, defined the two notions of optimality 
at play in the debate—and the broader literature—along with 
their idealizing assumptions, and articulated different ways that 
model users can define their reasoning goals with respect to ide-
alizing assumptions required for normative modeling. We turn 
next to demonstrating how the debate about collapsing bounds 
can be diffused by recognizing the different reasoning goals mo-
tivating the forms of the models implicated in the debate.

4.2   |   Reasoning Goals Motivating Structural 
Changes to the Original DDM

As discussed in Section  4.1.1, the original DDM (Stone  1960; 
Laming 1968) is the SPRT-optimal procedure for two-alternative 
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decision making. This section demonstrates two approaches 
that DDM users have taken to modify the original DDM in order 
to enhance its fidelity (i.e., ability to support particular reason-
ing goals) with respect to the target. In doing so, we show how 
the two models implicated in the collapsing bounds debate can 
be understood as complementary, rather than competing, expla-
nations of the same target.

4.2.1   |   Parsimony and Dynamical Fidelity Motivated 
the Extended DDM

Although the original DDM is commonly attributed to 
Ratcliff  (1978), the model structure detailed in Ratcliff  (1978) 
does not correspond to the structure that most authors refer 
to as the original DDM. Descriptions of the original DDM—
where log-likelihoods are continuously estimated and decision 
boundaries are symmetric around a starting point of 0—can 
be found in Stone  (1960) and Laming  (1968). The structure of 
Ratcliff 's (1978) model already reflects representational changes 
made to enhance the model's dynamical fidelity at the expense of 
SPRT-optimality: allowing drift rates to vary on a trial-by-trial 
basis.13

Throughout every iteration of the DDM's development, 
Ratcliff 's representational decisions were guided by the goal 
of creating a representation that can reproduce all measured 
aspects of human behavior on the two-alternative forced 
choice task (Ratcliff 1978; Ratcliff and McKoon 2008; Ratcliff 
and Rouder 1998; Ratcliff and Tuerlinckx 2002). Of uniquely 
high importance to Ratcliff is the ability of the DDM to re-
produce patterns of RT distributions across task conditions, a 
point he emphasizes in nearly all papers involving the model 
(Ratcliff 1978; Ratcliff et al. 2016; Ratcliff and McKoon 2008). 
An empirically robust pattern in this regard is the mixture of 
slow and fast errors present in a sample of measurements. This 
mixture varies both across individuals performing a task with 
the same instructions and within a single individual when 
they are instructed to prioritize either the speed or accuracy 
of their responses. Ratcliff 's solution to capturing this empir-
ical property of his target was to allow the drift rate and the 
starting point of the evidence accumulation process to vary 
probabilistically from trial-to-trial according to a uniform and 
normal distribution, respectively (Ratcliff and Rouder 1998). 
A later modification—uniform trial-wise variability in the 
non-decision term—was added to increase the DDM's abil-
ity to fit RT distributions with a high amount of variance in 
the 0.1 quantile (Ratcliff and Tuerlinckx 2002). The extended 
DDM encompasses all of these changes and functions as 
the standard form of the model in current research (Ratcliff 
et al. 2016).

This series of representational changes that made the ex-
tended DDM satisfy Ratcliff 's fidelity criteria also break the 
SPRT-optimality of its initial form (the original DDM). The 
mathematical form of the decision variable in the extended 
DDM, however, still corresponds to the optimal procedure 
for accumulating evidence for two-alternative forced deci-
sions in any environment (Moran 2015). It is thus the details 
about how that process is converted into decisions (i.e., with 
trial-wise variability in key parameters and fixed decision 

thresholds) that break the optimality of the extended DDM as 
a whole. Interestingly, a formal analysis undertaken by Jones 
and Dzhafarov  (2014) showed that if the form of trial-wise 
variability in the extended DDM (i.e., the probability distribu-
tions from which starting point, drift rate, and non-decision 
time are drawn on each trial) is left unconstrained, the model 
can fit any pattern of speed-accuracy data. The authors used 
these findings to argue that “the explanatory or predictive 
content of these models is determined not by their structural 
assumptions, but, rather, by distributional assumptions that 
are traditionally regarded as implementation details” (Jones 
and Dzhafarov  2014, p.1). In response, developers of the ex-
tended DDM argued that the form of the distributions govern-
ing trial-wise variability were not chosen ad hoc, but rather on 
the basis of their ability to robustly and reliably fit human data 
(Smith et al. 2014).

Taken together, the history of the development of the extended 
DDM—and how its form is defended against critics—reveals a 
strong commitment to dynamical fidelity on the part of its devel-
opers. This has led to a formal structure that, if used to explain 
why choice behavior exhibits particular patterns, can only do so 
by appealing to the intrinsic stochasticity of the system whose 
form was derived from best-fit to large amounts of data. We argue 
that this structure reflects the aims of cognitive psychometrics 
as a whole: developing principled models of cognitive processes 
that permit robust and reliable decomposition of behavior into 
meaningfully different component parts. Researchers in this 
subcommunity of DDM users often use statistical parsimony 
to guide their formal theory building, a position that natu-
rally lends itself to structures with components that prioritize 
compact description over normative guarantees (Palminteri 
et al. 2017; Vandekerckhove et al. 2015). In this sense, statistical 
parsimony is a primary explanatory fidelity criterion for users 
with these goals. Because the extended DDM satisfies both the 
high standards of dynamical fidelity and a guiding explanatory 
fidelity criterion, it can be considered to have been “optimized” 
for the explanatory goals of cognitive psychometrics.

4.2.2   |   Explanatory Fidelity of Optimality Motivated 
Collapsing Bounds

The structure of the collapsing bound diffusion model, we argue, 
has likewise been developed to meet the explanatory goals of 
users we call theoretical decision (neuro)scientists. This commu-
nity is considerably more heterogeneous than the one discussed 
above, comprised both of users whose focus is on behavior (e.g., 
Frazier and Yu 2007) and those who use the DDM to link behav-
ior with neural activity (e.g., Drugowitsch et al. 2012). The fea-
ture uniting these users is their commitment to optimality as an 
explanatory fidelity criterion. This section thus discusses how 
the collapsing bound diffusion model is the result of represen-
tational decisions that aim to preserve the normative status of 
the model under assumptions that are less restrictive than those 
required for SPRT-optimality.

The first specification of a diffusion model with collapsing decision 
boundaries was proposed by Frazier and Yu (2007). These authors 
targeted the SPRT's idealizing assumption that observers have an 
infinite amount of time to sample evidence before committing to a 
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choice (formally, the assumption of infinite horizon). Frazier and 
Yu (2007) developed a normative model that incorporates stochas-
tic (i.e., randomly varying) time limits and found that the optimal 
procedure in this specification involves decision thresholds that 
decrease over the course of a single choice (i.e., collapsing bounds). 
Drugowitsch et al. (2012) then targeted the SPRT's assumption of 
environmental homogeneity (i.e., same signal-to-noise ratio on 
each trial). Their solution also relaxes the assumption of infinite 
horizon as in Frazier and Yu (2007), but did so by adding an as-
sumption that each sample of evidence incurs some cost to the ob-
server. Drugowitsch et al. (2012) found that, on this specification 
of the formal problem, the optimal procedure also involves thresh-
olds that decrease over the course of a decision.

In order to identify normative solutions to these differently for-
malized problems, Frazier and Yu  (2007) and Drugowitsch 
et  al.  (2012) both made use of a notion of optimality known as 
Bellman optimality. This formalism posits that an optimal proce-
dure is one that maximizes an agent's expected return, that is, the 
amount of reward earned over the course of an experiment, which 
is conceptually equivalent to maximizing reward rate. Whereas 
the SPRT's optimality can be proven using standard mathemat-
ical techniques (Bogacz et  al.  2006; Edwards  1965; Wald and 
Wolfowitz 1948), identifying Bellman-optimal solutions requires 
using a computational procedure known as dynamic program-
ming. Details of the procedure vary across applications, but the 
general idea is that agents recursively update an estimate of their 
expected return with each new piece of information they get from 
the environment (Sutton and Barto 2018). Crucially, this means 
that the precise form of the Bellman-optimal procedure will de-
pend on details of the environment (e.g., strength of evidence on 
each trial, reward scheme, timing, etc.), and thus will vary across 
tasks. But if the mathematical form is determined using a Bellman 
equation, users have a guarantee that the form maximizes ex-
pected return in that environment. In the case of the DDM, col-
lapsing bounds thus maximize expected return—and thus are 
both Bellman and reward-rate optimal—for evidence accumula-
tion decisions made both within a fixed amount of time and in 
heterogeneous environments.14

A procedure whereby evidence accumulates to a threshold value 
that decreases over time thus emerges as a generally normative 
solution to slightly less idealized formalizations of the speeded 
two-alternative decision problem. This structure reflects the 
explanatory aims of DDM users who desire normative explana-
tions for choice behavior. When the assumptions required for 
the original DDM's normativity (i.e., SPRT optimality) were too 
restrictive, users in this community opted to identify optimal 
structures on weaker assumptions (i.e., finite amount of time to 
decide and different stimulus difficulty on each trial) and with 
more a more flexible notion of optimality (i.e., reward rate). This 
approach preserves the model's normative status while also 
enhancing its fidelity with respect to the explanatory aims of 
its users.

4.3   |   Reasoning Goals Motivating Approaches to 
Representational Decisions in Model Comparison

In the previous two sections, we demonstrated how consid-
eration of reasoning goals and fidelity criteria can provide 

insight into variability in representational decisions made by 
different users modeling the same target. We first discussed 
this in the context of optimal speed-accuracy tradeoffs in 
the DDM (Section  4.1) and then contrasted approaches that 
users can take when they deem the assumptions of norma-
tive/optimal models too idealized for their reasoning goals 
(Section  4.2). The present section extends the discussion to 
demonstrate how reasoning goals shape fidelity criteria and 
approaches to representational decision-making employed in 
model comparison.

Recognition of sources of variability in representational deci-
sions involved in model comparison is essential because (1) the 
explanatory success of a particular model is almost always de-
fined relative to alternative possible models, and (2) the space of 
possible alternative models is—in theory—infinite. Accordingly, 
the representational decisions that users make when construct-
ing alternative models define the space of possible alternatives 
against which the theory encoded in a model is tested. In much 
the same way that experimental scientists must carefully con-
sider how to construct their control conditions, model users 
must carefully reflect on the specifications of alternative models 
when interpreting the results of model-based research.

4.3.1   |   Parsimonious Dynamical Fidelity Motivates 
Data-Driven Approaches

In response to the growing popularity of collapsing-bound accu-
mulator models, Hawkins et al. (2015) undertook a large-scale 
quantitative comparison of model performance on a variety of 
perceptual decision making datasets. The authors took great 
care to ensure the statistical robustness of their results, utilizing 
data from different research groups and species, specifying mul-
tiple forms of collapsing bounds models, and running several 
computationally intensive sensitivity analyses. Further, they 
used well-established metrics for assessing how models in the 
comparison trade off goodness-of-fit with complexity: Akaike 
Information Criterion (AIC), Bayesian Information Criterion 
(BIC), and nested likelihood ratio tests. Taken together, the au-
thors' decisions reflect a “bottom-up” approach to model com-
parison: tiling the space of possible models, fitting them on large 
and heterogeneous datasets, and assessing each model's fidel-
ity on the basis of how parsimoniously it accounts for the wide 
range of data. Again, we argue, this approach reflects the aims 
of cognitive psychometrics as a whole: maximizing dynamical 
fidelity and relying on parsimony as an explanatory fidelity 
criterion.

One challenge with this approach to model comparison pertains 
to how the notion of model complexity is formalized. Two of the 
three quantitative metrics used by Hawkins et al. (2015)—AIC 
and BIC—define complexity in terms of the number of param-
eters in a model and linearly penalize models according to how 
many free parameters they use to explain the data. While this 
is a standard notion of model complexity, particularly in the 
field of mathematical psychology, it is not the only formal way 
to reason about complexity. Villarreal et al. (2023), for example, 
propose that complexity can be formalized in terms of “the pre-
dictions a model makes and the ability of empirical evidence to 
falsify those predictions” (p. 1), and present a metric that uses 
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Kullback–Leibler divergence to quantify complexity in these 
terms. The authors go on to show that this approach challenges 
traditional intuitions about complexity relations among nested 
models (i.e., those where one model is a specific case of another), 
which is the logical basis of the third metric used by Hawkins 
et  al.  (2015) in their large-scale model comparison endeavor. 
The point we wish to emphasize here is that model complexity—
much like optimality—can be formally defined in a number of 
different ways, some of which are better suited to particular rea-
soning goals than others. Paying attention to the assumptions 
embedded in formal definitions of key explanatory fidelity cri-
teria, like complexity and optimality, is essential for engaging 
critically with model-based research findings.

To demonstrate how the findings of model-based research are 
jointly sensitive to representational decisions about alternative 
models and assumptions of performance metrics, we highlight 
how the pattern of results observed by Hawkins et  al.  (2015) 
changed drastically between two sets of analyses reported in 
the paper. In the first analysis, all of the collapsing bounds 
models tested by Hawkins et al. (2015) were specified in a man-
ner that made them between 1.3 to 2 times as complex as the 
extended DDM (which functioned as the null model). One of 
sources of this heightened complexity was the incorporation 
of trial-level variability in drift rate, starting point, and non-
decision time into the collapsing bounds models that did not 
originally incorporate this variability (Drugowitsch et al. 2012; 
Frazier and Yu 2007). Hawkins et al.'s (2015) logic behind this 
decision was to create nested model structures, such that the 
extended DDM represents the simplest possible decision pro-
cess in the comparison. This type of comparison set has been 
called a “stacked deck,” since it quantitatively favors the null 
model (O'Connell et  al.  2018). However, even in this loaded 
inferential context, the collapsing bounds models appeared fa-
vored by BIC for datasets acquired from non-human primates. 
In a second analysis, Hawkins et al. (2015) performed the same 
model fitting procedures but removed trial-variability in drift 
rate, starting point, and non-decision time for the collapsing 
bounds models. These changes better aligned their specifica-
tions of collapsing bounds with the fidelity criteria motivating 
this form of the model, since neither Drugowitsch et al. (2012) 
nor Frazier and Yu  (2007) needed to incorporate any trial-
varying parameters to achieve their fidelity criteria. Readers 
are encouraged to compare the “Posterior Model Probability” 
visualizations in Figures 5 and 6 of Hawkins et al. (2015) to ap-
preciate how drastically these specification changes altered the 
pattern of results. Primate data that previously strongly sup-
ported collapsing bounds now seemed either mixed or to pre-
fer fixed bounds, and human data appeared to favor each form 
roughly equally (Hawkins et al. 2015, Figure 6).

4.3.2   |   Explanatory Fidelity of Optimality Motivates 
Theoretical Approaches

We can contrast Hawkins et al.'s (2015) “bottom-up” approach 
with the “top-down” approach displayed in Moran (2015). In 
a thought-provoking series of analyses, Moran  (2015) com-
bines mathematical proofs and model simulations to investi-
gate optimal decision procedures in heterogeneous and biased 
decision environments; that is, environments where signal 

strength varies trial-by-trial and where one outcome occurs 
more frequently than the other. This model development strat-
egy is similar to those surveyed in Section  4.2.2, but differs 
in one important regard: assuming that the decisions are 
made according to the original DDM, which is known to be 
suboptimal in heterogeneous environments (Section  4.1.1). 
Moran  (2015) then investigated which structural modifica-
tion(s) to the suboptimal process led to the highest possible 
reward rate in that environment, effectively testing the opti-
mality of differently suboptimal model structures. We consider 
this a “top-down” approach to model comparison because it 
focuses exclusively on the formal/logical relationships among 
different models and their suitability for supporting particular 
types of reasoning goals.

The utility of Moran's  (2015) approach can be demonstrated 
by contrasting his findings with those of van Ravenzaaij et al. 
(2012). On the basis of several simulations, van Ravenzwaaij 
et  al. (2012) reported that maximizing reward rate in biased 
and heterogeneous environments requires adjusting only the 
starting point of the decision process. This finding contradicted 
previous theoretical work indicating that both the starting point 
and drift rate must be biased to maximize reward rate (Bogacz 
et al. 2006), as well as empirical evidence supporting the exis-
tence of a biased drift in human and non-human primate deci-
sion making (Hanks et al. 2011). By asking the same question 
with a different approach to representational decision making, 
Moran  (2015) identified a key oversight in van Ravenzwaaij 
et  al.'s (2012) simulations: All of their models used the same 
threshold value, which was chosen arbitrarily. This represen-
tational decision simplified the space of possible solutions in a 
manner that aligned with van Ravenzwaaij et al.'s (2012) specific 
goal (i.e., challenging the model reported in Hanks et al. 2011). 
However, it also omitted the fact that optimal solutions also 
depend on how/where the threshold value is set. Moran (2015) 
then showed that when the same simulations reported by van 
Ravenzwaaij et al. (2012) included threshold values in the search 
space (along with negative values of drift rate), the reward-rate 
maximizing process is one that imparts a bias both on the start-
ing point and drift rate. Altogether, this contrastive example 
highlights the utility of formal approaches to model comparison, 
particularly for purposes of reasoning about formal notions like 
optimality.

4.4   |   A Principled Heuristic for Deciding Whether 
to Use Fixed or Collapsing Bounds

This section provided a novel conceptual analysis of the collaps-
ing bounds debate, highlighting how different reasoning goals 
motivated diverging approaches to developing and testing mod-
els implicated in the debate. In contrast to some of the rhetoric of 
previous model comparison research surveyed above, we argue 
that the two models offer complementary explanations about 
the mechanisms of decision making. The extended DDM, which 
uses fixed decision boundaries, gives a parsimonious explana-
tion, whereas the collapsing bounds model gives a normative 
explanation.

Our suggestion is that the appropriate form to use depends 
on your explanatory goals. If you wish to reason about the 
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optimality of two-alternative choice behavior in heterogeneous 
and/or time-limited environments, then your model must incor-
porate collapsing decision boundaries. But if the normativity of 
the process is irrelevant for your explanatory or reasoning goals, 
then the extended DDM is completely sufficient for that purpose 
(see also Boehm et al. 2020 for data suggesting that fixed bounds 
might offer a robust “default” setting that approximates reward 
rate optimality). Of course, it is always possible to fit both types 
of models to target data and use careful model comparison 
methods to determine which structure offers the better explana-
tion (e.g., Palestro et al. 2018).

5   |   Summary and Conclusion

In this article, we summarized some core ideas in the philoso-
phy of modeling to develop a “philosophical toolkit” for compu-
tational cognitive modeling (Section 2). We then demonstrated 
the utility of such a resource by using it to give a philosophical 
introduction to an extremely prominent model in the brain and 
behavioral sciences (Section 3) and then offered a novel concep-
tual analysis of a long-standing debate regarding the form of that 
model (Section 4). Throughout, we emphasized the central role 
that reasoning goals play in shaping every step of model-based 
research, echoing recent calls from philosophy (Danks  2015; 
Potochnik and Sanches de Oliveira 2020), computational neuro-
science (Kording et al. 2018), and cognitive modeling of human 
behavior (Wilson and Collins 2019). Our goal in doing so was 
to highlight the user-dependence of the insights afforded by 
these formal tools, an aspect that can be overlooked by both 
new and seasoned researchers alike. This goal was motivated 
by two core contributions that philosophy can offer practicing 
scientists: (1) highlighting implicit beliefs or assumptions they 
have about how their tools work and (2) identifying the logical 
and epistemic limitations of those tools with respect to particu-
lar goals. Our toolkit and case study, though focused on topics in 
the DDM, were constructed with the goal of conveying insights 
that can generalize to most, if not all, of the formal models that 
are becoming increasingly common in cognitive neuroscience.
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Endnotes

	 1	This article is not intended as a guide for software usage. Conceptual 
and practical considerations related to implementing computational 
cognitive models can be found in Cooper and Guest (2014), Lee and 
Wagenmakers  (2014), Lin and Strickland  (2020), and Wilson and 
Collins (2019)

	 2	We coin “existemic” to refer to feelings of existential dread brought 
about by reflecting on the epistemic limitations of particular ways of 
knowing about the world.

	 3	Weisberg  (2013) considers computational models a special case of 
mathematical models because of how scientists use them to explain. 
On his account, mathematical models use sequences of states or an 
equilibrium as the explanation, whereas computational models use 
the procedure that specifies how an input is transformed into an 
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output. See also Richmond (2024) for a complementary perspective 
on the computational explanations in cognitive science.

	 4	For example, some models are concrete representations, like scale 
models used in architectural engineering and rodent models used in 
translational neuroscience research. Other models are abstract rep-
resentations that compactly summarize many observations about a 
target process, or describe how a target responds when it is intervened 
upon, rather than comprising theories that can be used to explain 
why the target responded how it did. These types of models are often 
called “descriptive,” “phenomenological,” or “data” models.

	 5	Readers might already be familiar with this position on the basis of 
the popular aphorism “all models are wrong, but some are useful” 
(Box and Draper 1987, p. 424).

	 6	Explanation is one of the oldest topics in philosophy of science and 
thus cannot be exhaustively covered here. Helpful introductions to 
ongoing philosophical work on explanation in the cognitive and brain 
sciences can be found in Kaplan  (2017) and a special issue edited 
Colombo and Knauff (2020).

	 7	Whether an explanandum is different from a model's target depends 
on what the user construes as the target of a particular model. In 
the case when the target is a particular pattern of observations ob-
served in particular experimental contexts, there is no meaningful 
difference between a target and an explanandum. However, when the 
target of a model is a general (neuro)cognitive process (e.g., speeded 
two-alternative decision making), then particular observations of 
the target in particular contexts constitute different explananda that 
the model is tasked with unifying into a single generative formal 
structure.

	 8	Identifying normative solutions to formal problems that represent 
different types of constraints a user wishes to incorporate into their 
model is the premise of the resource-rational approach to cognitive 
modeling (Lewis et al. 2014; Lieder and Griffiths 2019).

	 9	Some common formal frameworks in psychology and neuroscience 
include signal detection theory, sequential analysis, information the-
ory, Bayesian inference, and Markov decision processes.

	10	This is one of the first debates in the behavioral and brain sciences 
to turn a critical eye to notions of optimality shaping the collective 
scientific project. The debate concerned whether human economic 
decisions are “rational” according to formal theories developed in 
economics. Overviews of the debate can be found in Stanovich and 
West (2000) and Tetlock and Mellers (2002).

	11	An interesting and relevant bit of history is that two different goals 
led to independent developments of the sequential analysis frame-
work during World War II. One goal was enhancing efficiency of 
industrial output (Barnard  1946; Wald  1945), and another was 
cryptanalysis to decode enciphered German messages. This lat-
ter method was derived by Alan Turing, and the relationship of 
Turing's framework to sequential sampling is detailed quite nicely 
in Gold and Shadlen (2002).

	12	More recently, the drift rate variable has also been construed to rep-
resent how quickly an observer internally processes information in 
general (Schubert et al. 2015).

	13	We thank Barbara Dosher for directing our attention to this detail.

	14	Frazier and Yu (2007) do not explicitly frame their Bellman-optimal 
solution as one that optimizes reward rate, opting instead to discuss 
optimality in the Bayesian sense of appropriately updating belief 
about a latent property of the environment.
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