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Abstract

Expectations, or the prior probability of a particular choice out-
come, are powerful sources of information for improving quick
decisions made on the basis of noisy and incomplete evidence.
Most existing research on expectations in perceptual decision
making provide observers with perfect knowledge of prior
probabilities, and thus fail to capture the experience-dependent
uncertainty characteristic of expectations learned and used out-
side of the lab. Here, we report data from a novel expectation-
guided perceptual decision making task specifically designed
to overcome these limitations. We find that the effects of ex-
pectations learned through experience are modulated by the
accuracy with which observers estimate the true probability of
a cue, and that this estimation accuracy exhibits substantive
variation across individuals. Additionally, we find that confi-
dence ratings about the accuracy of a cue’s probability are pri-
marily driven by an observer’s subjective estimate of the cue’s
probability rather than its objective probability as defined by
experience.
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Introduction
Expectations in perceptual decision making are defined as the
prior probability that one of two choice outcomes is correct
or will be rewarded. The standard approach for measuring ef-
fects of expectations in the lab either explicitly instructs hu-
mans about prior probability or trains non-human primates on
tens of thousands of trials in order to ensure they have learned
that probability (e.g., Hanks et al., 2011). While this learning
of prior probability has many statistical advantages, it fails
to capture the experience-dependent uncertainty inherent of
perceptual expectations acquired outside of the lab. The for-
mation of these naturalistic expectations requires aggregating
across related experiences stored in episodic memory, and
flexibly retrieving an estimate of the prior probability of a
particular choice outcome in a context-specific manner (CO-
AUTHOR and et al., 2023).

When the assumption of perfect prior knowledge is re-
laxed, a new question arises: is choice behavior guided by
objective probabilities reflecting implicit knowledge based on
error-based learning or subjective probabilities that declara-
tive memory systems infer from experience? We have pre-
viously shown that dynamic effects of expectations can be
explained by a dynamic reliability-weighted integration pro-
cess, where reliability estimates are governed jointly by sub-
jective and objective probability information (Authors, 2022).
This paper presents a novel experimental task inspired by pre-
dictions of that model, and uses a series of linear regression

analyses to begin revealing how different sources of prob-
ability information (objective and subjective) contribute to
expectation-guided perceptual decisions.

Methods

We designed a novel cue-guided perceptual decision task that
(i) required that observers learn expectations through expe-
rience and (ii) obtained direct measures of each cue’s sub-
jective predictive probability, along with a confidence rating
in that estimate. Participants then used these learned cues
as memory-based expectations while they performed an evi-
dence accumulation based perceptual decision-making task.

Stimuli and participants

Stimuli Visual evidence consisted of two grayscale scene
images. There were two sets of possible scene images (i.e.,
four images total), with pairs of images and their mappings
to keyboard responses randomized across participants. The
probability of a given image being the ‘dominant’ image in a
“stream” of visual evidence displayed to the observer on each
trial varied across three possible conditions, which were com-
municated to the observer via a colored border that circum-
scribed the visual evidence during the stream. There were two
sets of possible borders, with each set comprised of of triadic
colors (set1 = red, blue, yellow; set2 = orange, green, purple).
The set of border colors, along with the borders’ assignments
to dominance probabilities for particular images in the visual
evidence stream, were randomized across participants.

Participants A sample of 18 undergraduate students (age
M=20.5 years; SD=1.47 years; 13 female, 3 male, 2 non-
binary) were recruited from the authors’ university. One sub-
ject was excluded from analysis because of a coding error
in the experiment, resulting in a sample size of n=17 for all
reported analyses. Participants were compensated for their
time either with course credit or a pro-rated cash payment of
$15/hour. This study was approved by the Institutional Re-
view Board at the authors’ University and all subjects pro-
vided written informed consent.

Task design

Data were collected in a single experimental session ranging
between 60-90 minutes. Each session began by instructing
participants on the mapping between the two scene images
and the 1 and 2 number keys on a US keyboard.



Figure 1: Task design. (A) Participants first learn that different colored borders make different predictions about the probability
of observing one of two possible scene images. The objective probability of each cue is defined by the frequency with which
it is followed by one of the two scene images. (B) After learning, participants use a slider to report their subjective estimate
of each cue’s probability followed by a confidence rating in that estimate. (C) In the last phase of the experiment, participants
are presented with stochastic visual evidence inside of the colored borders. Their task to report which image is dominant (i.e.,
presented more frequently) in a 60Hz stream of visual evidence, followed by a confidence rating in that perceptual decision.

Calibration We used two interleaved QUEST staircases
(Watson and Pelli, 1983) to identify values of visual evidence
coherence that, for each image, resulted in 70% accuracy on
the perceptual decision task (described in more detail below).
Evidence coherence was defined as the proportion of signal
frames in the visual evidence stream that contained the tar-
get stimulus. The calibration procedure ensured that decision
difficulty in the Cued Inference phase would be identical for
both target stimuli, effectively controlling for low-level visual
differences between the images that might systematically bias
choices toward one of the options. Participants completed 80
trials of the decision task (40 trials per staircase) during the
calibration procedure and received feedback on their choices.

Cue Learning Next, participants learned the predictive
probability of each cue (i.e., each colored border) by observ-
ing a series of cue-image pairings in which the cue was pre-
sented prior to the image it was probabilistically paired with
(Figure 1A). To ensure active engagement—and to build up
associative motor memories—participants were instructed to
respond on each trial indicating which image appeared on
screen after the cue using the previously-learned image-key
mappings. Participants were told that there was a predictive
relationship between the cues and scene images, and that their
broader goal for this phase of the experiment was to learn
that relationship. Finally, participants were also told that they
were permitted to respond in the inter-stimulus interval (ISI)
between the onset of the cue and scene image if they de-
sired. Regardless of when participants responded, they re-
ceived feedback on their response accuracy on each trial.

In order to maximally align learning and decision environ-
ments, we permitted the ISI between cue and image onset to
vary across trials according to a truncated exponential dis-

tribution. This approach ensures a fixed hazard rate across
learning trials, such that participants are maximally uncertain
about the temporal onset of scene images across learning tri-
als (CO-AUTHOR and collaborator, 2024). ISIs ranged from
750ms to 1500ms (mean = 892ms, mode = 783ms). Af-
ter a scene image appeared on screen, participants had up
to 1500ms to make their response. Post-trial feedback was
displayed for 1500ms, and participants were told that they
should respond faster on the next trial if the feedback screen
appeared before they made a response.Each cue was presented a total of 30 times and the order
of cues was fully randomized, providing participants 90 total
observations of cue-image pairings. The objective probability
of each cue was defined as the frequency with which it pre-
ceded one of the two scene images. Two cues were randomly
selected to have 80% predictive probabilities (i.e., one 80%
cue for each image) and the third cue equally predicted both
images (i.e., one 50% cue for both images).

Learning Validation Immediately after Cue Learning, par-
ticipants were presented with each colored border and used a
sliding scale to report their subjective estimates of each cue’s
predictive probability (Figure 1B). Their estimates were per-
mitted to range from 50-100% and the slider was initialized
to 50% on each trial. Both the subjective estimate and sub-
sequent confidence rating (1-4; not confident-quite confident)
were self-paced.

Cued Inference In the final phase of the experiment, partic-
ipants observed a rapidly-alternating (60Hz) “stream” of the
two scene images interleaved with pure noise frames (phase-
scrambled superpositions of the images) (Figure 1C). Ob-
servers’ task was to report which of the two scene images



was presented more frequently (i.e., was the “target”) on each
trial. The proportion of target frames on each trial was de-
fined by the calibrated coherence value for that target’s trial,
as estimated during the preceding Calibration phase. Cru-
cially, this visual evidence was presented inside the colored
borders, ensuring that information about the prior probability
was always accessible to the observer. Participants were told
that the predictive relationships they just learned between the
colored borders and scene images also applied in this phase
of the experiment (i.e., “the correct answer is usually the one
predicted by the cue”). They were also instructed to respond
as quickly and accurately as possible. However, because we
also elicited decision confidence ratings on each trial, partic-
ipants did not get feedback about their choice accuracy.

We incorporated two periods of stochastic visual noise into
each Cued Inference trial. The durations of these noise peri-
ods, as well as the brief signal period in between them, were
all drawn from separate truncated exponential distributions
in order to guarantee a fixed hazard rate across trials (CO-
AUTHOR and collaborator, 2024). The maximum duration
of any trial was 3333ms, and any remaining time after the sec-
ond noise period consisted of threshold-level visual evidence.
Immediately after making a decision, participants had up to
3000ms to report their confidence in that decision’s accuracy
on a scale of 1-4 (not confidence-quite confident). Trials were
separated by 1000ms intertrial interval.

Each subject completed 150 trials for each 80% cue and
75 trials for the 50% cue, thus completing 375 trials in total.
The assignment of cue and target was fully randomized across
trials, with the probability of a scene image being a target for
a particular cue being defined by that cue’s true probability.
This means that, for 20% of trials with an 80% cue, the cue
was incongruent with respect to the true trial target (i.e., its
effective prediction was 0.2).

Analyses
Software All behavioral data were analyzed using R ver-
sion 4.4.2. Regression models were fit using the ‘lme4‘ pack-
age. Statistical tests on fitted coefficient values were per-
formed using the ‘lmerTest‘ package, and BIC values for fit-
ted models were obtained using the ‘compare performance()‘
function from the ‘performance‘ package in R. Specific mod-
els are described below.

Definitions Our Results section makes use of a number of
different variable names. For clarity and convenience, we list
each variable’s definition here:

• trueCue: a cue’s true/objective probability; takes on values
0.5 and 0.8

• congruence: the (mis)match between the target predicted
by a cue and the true target of visual evidence on each trial;
takes on values congruent, incongruent, and neutral (in
the case of 50% cues)

• sub jectiveCue: an observer’s reported estimate of a cue’s
true probability; takes on values 0.5-1

• cueCon f idence: an observer’s confidence rating in their
sub jectiveCue report; takes on values 1-4

• cueDi f f : a signed difference between sub jectiveCue and
trueCue

• cueCorr: a within-subject correlation coefficient between
sub jectiveCue and trueCue

Results
Our analyses aimed to answer the following questions:

1. How well are subjects able to learn the predictive power
of the cues during Cue Learning? We answer this by
examining the relationship between subjects’ reported cue
probabilities and their objective probabilities, as well as the
influence of these factors on subjects’ confidence in their
learned probabilities.

2. How does subjects’ learning of the cues’ predictiveness
impact their choice behavior? We answer this by exam-
ining both choices made by observers and their reaction
times (RTs) during the Cued Inference phase, with refer-
ence to individual differences in the answer to Question 1.

Learning Validation: Accuracy and Confidence of
Cue Estimates
Accuracy of cue estimates Figure 2 depicts cue- and
observer-specific metrics of cue estimate accuracy. We com-
puted the cue-specific metric (cueDi f f ) as the signed dif-
ference between a reported cue probability (sub jectiveCue)
and that cue’s true objective probability (trueCue). As shown
in Figure 2A, participants tended to overestimate the prob-
ability of the 50% cue while underestimating the probabil-
ity of the 80% cues. A simple linear regression confirmed
the statistical significance of this effect (β = -0.70882, t = -
5.756, p <.001). We computed an observer-specific metric
(cueCorr) as the linear correlation, across all cues, between
the subjective cue probability (sub jectiveCue) and its true
probability (trueCue). Figure 2B illustrates the heterogene-
ity in cue estimation accuracy across participants. Whereas
some participants reported subjective estimates that perfectly
matched the true probability of the cue, others systematically
mis-estimated probabilities across all of the cues.

Confidence in cue estimate Next, to investigate how sub-
jective and objective probability information shape confi-
dence in observers’ cue estimates, we examined the suc-
cess of 4 nested linear models in predicting cueCon f idence
(Table 1). The winning model used only a main effect of
sub jectiveCue to predict estimate confidence, and returned a
significant main effect (β = 4.52, t = 5.968, p <.001). This
suggests that confidence in a subjective cue estimate is pri-
marily driven by the actual subjective estimate itself rather
than the true objective cue probability.

To complement this analysis into the probability informa-
tion shaping cueCon f idence judgments, we investigated how
our two measures of cue estimate accuracy–cueDi f f and



Figure 2: Accuracy of subjective cue estimates. (A) Cue-
specific estimate accuracy (cueDi f f ) was better for 80% cues
than 50% cues. (B) The cross-cue correlation of an observer’s
subjective probability estimate and the true probability of a
cue (i.e., the cueCorr metric) across participants.

Effects Structure BIC
trueCue 133.9
subjectiveCue 110.7
trueCue+ sub jectiveCue 114.1
trueCue∗ sub jectiveCue 115.5

Table 1: Comparing subjective and objective cue proba-
bility as predictors of cue estimate confidence. The win-
ning linear model (bolded) uses only subjective probability
(sub jectiveCue) to predict cueCon f idence

cueCorr–related to confidence in subjective cue estimates.
We fit a linear model that predicted cueCon f idence using
an interaction between cueDi f f and cueCorr. Importantly,
cueDi f f is a predictor capturing the difference between a
cue’s true probability and the observer’s estimate thereof,
meaning that values closer to 0 indicate a higher degree of
accuracy in subjective cue estimates. The model returned a
a trending main effect of cueDi f f only (βcueDi f f = 1.50, t =
1.79, p = .08), indicating that confidence ratings in cue esti-
mates increased linearly with the value of that cue estimate
irrespective of how accurate the estimate actually was.

Cued Inference: Choice Behavior and Timing
We now turn to investigating how objective and subjective
cue probability information contributed to choice behavior
during Cued Inference. Here, we split our analyses to ex-
amine choice behavior (a) on the basis of expectations alone
(i.e., during the anticipation period before visual evidence on-
set; see Methods & Figure 1), and (b) when memory-based
expectations were integrated with incoming sensory informa-
tion once visual evidence became available. In both cases, we
examined both the timing and accuracy of choices.

Responses driven by expectations alone It has previously
been shown that when a cue signals that upcoming visual ev-
idence will be weakly informative and that the prior proba-
bility of a particular target is high (i.e., 80%), observers make

Figure 3: Accuracy-based predictors of cue estimate con-
fidence. Shaded regions correspond to standard errors of
model estimates. Individual points correspond to individual
participant data. (A) Subjects’ errors in estimating each in-
dividual cues’ predictiveness (cueDi f f ) marginally predicted
confidence in subjective cue estimates. (B) The overall cor-
relation between estimated and true predictive probabilities
(cueCorr) failed to predict cueCon f idence.

a perceptual decision before observing any visual evidence at
all (CO-AUTHOR and et al., 2023), which here we term an
early response. Additionally, this effect was found to scale
with the amount of elapsed time between the onset of a prior
cue and visual evidence: as more time elapsed, observers be-
came more likely to make an early response (CO-AUTHOR
and et al., 2023).

We performed two model comparison analyses to investi-
gate which of the five factors investigated above (trueCue,
sub jectiveCue, cueCon f idence, cueCorr, and cueDi f f ) best
predicted the probability of making an early response during
the anticipation period (see Methods & Figure 1). Because
this outcome variable is binary (i.e., a response was made
during this period or not), we fit two sets of generalized lin-
ear models with family=‘binomial’.

The first round of model comparisons used each of these
factors alone as a predictor. This comparison revealed that
the observer-specific cue accuracy metric, cueCorr, was the
best predictor of early responding in both sets of comparisons
(Table 2, top comparison set).

The second round of model comparisons permitted each
factor to interact with the duration of the anticipation pe-
riod (anticipationDuration). This analysis revealed that
the model permitting an interaction between cueCorr and
anticipationDuration had the lowest BIC of all of the
models—including all models in the previous comparison
set—indicating that early responses are best captured by an
interaction between observer-specific cue accuracy and the
duration of the anticipation period (Table 2, bottom compari-
son set). This winning model returned a significant main ef-
fect of observer-specific estimate accuracy (βcueCorr = 13.574,
z = 7.073, p <.001), a significant main effect of anticipation
duration (βanticipationDuration = 0.159, z = 6.463, p <.001), and
a significant interaction (βcueCorr∗anticipationDuration = -0.133, z



Single-Factor Predictor BIC
trueCue 2192.6
sub jectiveCue 2182.6
cueCon f idence 2146.0
cueCorr 1820.6
cueDi f f 2231.0
Interaction Predictors
trueCue∗anticipationDuration 2176.7
sub jectiveCue∗anticipationDuration 2167.7
cueConfidence∗anticipationDuration 2138.1
cueCorr ∗anticipationDuration 1786.0
cueDi f f ∗anticipationDuration 2217.0

Table 2: Comparing predictors of early responses. In
the first comparison set (top), cueCorr was the best pre-
dictor. However, analyses permitting interactions with
anticipationDuration (bottom) revealed that an interaction
between this factor and cueCorr predicts probability of early
response better than any other factor or combination. Win-
ning models in each comparison set are bolded.

= -5.050, p <.001). Back-transformed model estimates for
the interaction term are displayed graphically in Figure 4A,
which shows that observers who better estimated the true cue
probability (i.e., those with a cueCorr value closer to 1) were
significantly more likely to make early responses. For trials
at the extreme end of the anticipation duration distribution,
however, this difference no longer remains significant.

Next, we investigated the probability that observers made
a correct choice during the anticipation period. Accuracy
in this case is defined as reporting the scene that would
have been the target on that trial. We modeled the binary
outcome variable using additive main effects of trueCue,
sub jectiveCue, and cueCorr. Of these predictors, trueCue
exhibited the only trending effect on (visual-evidence blind)
choice accuracy (βtrueCue = 4.0338, z = 1.684, p = 0.092).
Figure 4B shows how the effect of trueCue on early response
accuracy corresponds to probability-matching behavior dur-
ing the anticipation period.
Responses integrating memory and sensory evidence
We next investigated the factors that best predict choices and
reaction times (RTs) on trials when observers waited until
after the onset of visual evidence to make a choice. Based
on our findings displayed in Figure 4A, we investigated first
whether cueCorr also fared best in predicting in response
times on trials where observers did not respond early. To nar-
row down the space of possible comparisons, we focused on
three conceptually-motivated model structures. We compared
the predictive success of cueCorr alone against an interaction
between cueCorr and trueCue and against an interaction be-
tween cueCorr and cueCon f idence. Table 3 shows that RTs
for choices made after the anticipation period were best pre-
dicted by this latter model, which returned a significant main
effect of cueCorr (βcueCorr = 0.30874, t = 5.109, p <.001),

Figure 4: Choice behavior driven by expectations alone.
rror bars correspond to standard errors of model estimates.
(A) A linear model revealed a significant interaction between
anticipation duration and cueCorr when predicting early re-
sponding. (B) The probability of making a correct response
based on expectations alone reveals probability-matching be-
havior.

a significant main effect of cueCon f idence (βcueCon f idence =
-0.06916, t = -4.719, p <.001), and a significant interaction
(βcueCorr∗cueCon f = -0.06902, t = -3.363, p =.0001). Figure
5 graphically displays the interaction effect, which reveals
that participants with greater cueCorr values generally took
longer to make responses after the onset of visual evidence,
especially when presented with cues whose estimates they
were not confident in.

Single-Factor Predictor BIC
cueCorr 17933.6
cueCorr ∗ trueCue 17914.3
cueCorr∗ cueConfidence 16970.5

Table 3: Comparing predictors of RTs made after the an-
ticipation period. BIC comparisons reveal that RTs based on
expectations and visual evidence are best predicted with an
interaction between subjective estimate accuracy (cueCorr)
and confidence in that estimate (cueCon f idence)

Finally, we investigated how cueCorr, trueCue, and
cueCon f idence impact the accuracy of choices made after
the onset of visual evidence. Previous analyses further mo-
tivated us to include congruence—the (mis)match between
the true target on a trial and the target predicted by the ob-
jective cue—as an additional factor in this analysis. We be-
gan by comparing the performance of 9 different fixed effects
structures in predicting binary choice accuracy on each trial
where observers responded after the onset of visual evidence
(Table 4). Despite its complexity, the model using a 3-way
interaction among cueCorr, cueCon f idence, and congruence
provided the most parsimonious fit to accuracy for choices
made after the onset of visual evidence.

The model returned a significant main effect of cueCorr (β
= -0.86621, z = -2.257, p <.001), a significant effect of cue-
evidence congruence (β = -0.72637, z = 4-2.235, p =.026), a



Figure 5: RTs based on expectations and visual evidence.
Observers who made better overall estimates of cue probabil-
ities (i.e., had high cueCorr values) generally took longer to
respond after the onset of visual evidence, especially when
on trials containing cues for which they were not confident in
their estimates. Error bars correspond to standard errors of
model estimates.

Effect Structure BIC
trueCue 6619.2
sub jectiveCue 6618.8
cueCorr 6585.4
cueCon f idence 6218.4
trueCue∗ congruence 6547.5
sub jectiveCue∗ congruence 6538.8
cueCon f idence∗ congruence 6084.1
trueCue∗ cueCon f idence∗ congruence 6084.1
cueCorr*cueConfidence*congruence 6038.1

Table 4: Comparing predictors of accuracy for choices
made after visual evidence onset. The winning model is
bolded.

significant effect of cue-evidence incongruence (β = 0.86165,
z = 2.105, p =.035). It also returned significant interac-
tions between cueCorr and cue-evidence congruence (β = -
0.97683, z = -2.164, p =.030), between cueCon f idence and
cue-evidence congruence (β = 0.30221, z = -2.164, p =.030),
as well as a significant interaction between cueCon f idence
and cue-evidence incongruence (β = -0.52307, z = -3.562,
p =.0004). Finally, the model returned a significant three-
way interaction among cueCorr, cueCon f idence, and cue-
evidence congruence (β = 0.38579, z = 2.373, p =.018),
which we display graphically in Figure 6.

The significant three-way interaction (central panel of Fig-
ure 6) can be interpreted as follows. When visual evidence
indicates that the cue’s prediction is correct on that trial (i.e.,
when cue & evidence are congruent), observers with higher
cueCorr values become much more likely to make a correct
response if presented with a cue whose probability they were
confident in estimating. However, observers who did not dis-
play such sensitivity to the alignment of the subjective esti-

mates with the cue’s true probability (i.e., those with lower
cueCorr values) were equally likely to make responses with
high accuracy regardless of how confidently they estimated
the probability of that trial’s cue.

Figure 6: Choice accuracy based on expectations and vi-
sual evidence. Plot panels correspond to different configura-
tions of cue-evidence congruence. Error bars correspond to
standard errors of model estimates. An interpretation is pro-
vided in the main text.

Discussion
We measured human behavior on a novel expectation-guided
perceptual decision task that required observers to learn ex-
pectations from experience, make explicit reports about their
estimates of each cue’s probability, and then use those cues
to make perceptual decisions under uncertainty. Our findings
indicate that, whereas choice behavior is driven by an inter-
action of objective and subjective cue probability, confidence
ratings in subjective cue probabilities are primarily driven by
the magnitude of the estimated probability itself. To the de-
gree that subjective and objective estimates are generated by
explicit and implicit memory systems, respectively, our re-
sults suggest that these two systems are integrated in the ser-
vice of adaptively biasing choice behavior.
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